GenAI-Architect-70-Hands-On-Projects

GenAI-Architect-Skill-Upgrade-Hands-On-Projects

๐Ÿ“– GenAI Architect Academy โ€“ 70+ Hands-On Projects for Skill Upgrade from Zero to Production

๐Ÿ“š GenAI Architect: From Zero to Production ๐Ÿš€

A comprehensive, hands-on video series transforming you into a Generative AI Architect through 70 structured videos. Perfect for beginners and pros alike!

๐Ÿš€ Course Overview

๐Ÿ”ฅ What Makes This Unique?


๐Ÿ“‘ Phase 1: Foundations ๐Ÿ—๏ธ (Videos 1-15)

Build AI/ML basics from scratch with your first generative project.

# ๐ŸŽฌ Title ๐Ÿ”‘ Key Concepts ๐Ÿ› ๏ธ Tools โšก Hands-On
1 ๐ŸŽค Introduction to AI and GenAI AI history, supervised/unsupervised - Install Python, explore demos
2 ๐Ÿ“Š Machine Learning Basics Data splits, regression, classification Scikit-learn Linear regression model
3 ๐Ÿง  Neural Networks Fundamentals Neurons, layers, activation - Simulate neurons in Python
4 ๐Ÿ—๏ธ Deep Learning Essentials CNNs, RNNs, optimizers TensorFlow/Keras MNIST NN trainer
5 ๐Ÿ“ˆ Introduction to Generative Models Distributions, sampling - Random data generation
6 ๐ŸŽจ Autoencoders and VAEs Encoder/decoder, KL divergence PyTorch VAE image generator
7 โšก GANs Basics Generator/discriminator PyTorch Simple digit GAN
8 ๐Ÿ› ๏ธ Data Handling for GenAI Preprocessing, augmentation Pandas, NumPy NLP dataset prep
9 ๐Ÿ Python for GenAI Libraries, environments NumPy, Pandas Data visualization
10 ๐Ÿš€ Mini-Project: Image Generator with VAEs Latent space exploration PyTorch, Colab Train & generate new images
11 โš–๏ธ Ethics in AI Bias, fairness metrics - Bias analysis
12 ๐Ÿ’ป Hardware for GenAI CPUs, GPUs, TPUs - Compare CPU/GPU in Colab
13 โ˜๏ธ Cloud Platforms for Beginners - Google Colab Deploy scripts
14 ๐Ÿ“ Evaluation Metrics FID, BLEU Custom Python Evaluate GAN
15 ๐ŸŽฏ Capstone: Basic GAN for Custom Data Iteration on failures PyTorch Custom image generator

๐Ÿ“– Detailed Guide to Phase 1 Concepts ๐Ÿ“š

This section provides world-class, comprehensive yet accessible explanations of Phase 1 courses with simple language blended with technical precision, ensuring beginners grasp fundamentals while professionals appreciate depth.


These detailed explanations ensure comprehensive understanding while maintaining accessibility. Each concept integrates hands-on practice in labs for mastery.

๐Ÿ“‘ Phase 2: Core GenAI Concepts ๐Ÿค– (Videos 16-35)

Dive into LLMs, transformers, RAG, and multimodal with practical projects.

# ๐ŸŽฌ Title ๐Ÿ”‘ Key Concepts ๐Ÿ› ๏ธ Tools โšก Hands-On
16 ๐Ÿ“ NLP Basics: Text & Embeddings Tokenization, Word2Vec NLTK, Gensim Sentence similarities
17 ๐Ÿ”„ Sequence Models RNNs, LSTMs, GRUs Keras LSTM text predictor
18 โšก Transformers Self-attention, multi-head PyTorch Simple attention layer
19 ๐Ÿง  BERT & Pre-trained Models Bidirectional, fine-tuning Hugging Face BERT sentiment analysis
20 ๐ŸŽค GPT Evolution GPT-1 to GPT-4o, scaling OpenAI API Text generation with GPT-2
21 ๐Ÿš€ Mini-Project: Chatbot with GPT-2 Conversation optimization Hugging Face Fine-tune on dialogues
22 ๐ŸŽจ Diffusion Models Stable Diffusion basics Diffusers library Image generation
23 ๐Ÿ”— Multimodal GenAI CLIP, text-image alignment OpenAI CLIP Image classification
24 ๐Ÿ”Š Audio Generation WaveNet, Tacotron TensorFlow Simple audio synthesis
25 ๐ŸŽฅ Video Generation Frame prediction, GANs PyTorch Video Generate short clips
26 ๐ŸŽ›๏ธ Fine-Tuning LLMs PEFT, LoRA Hugging Face PEFT Fine-tune LLaMA
27 ๐Ÿ“Š Datasets Hub Quality curation Datasets library Load & preprocess data
28 ๐Ÿš€ Mini-Project: Stable Diffusion Custom Styling, conditioning Diffusers Generate styled images
29 ๐Ÿ’ก Prompt Engineering Chain-of-thought, few-shot OpenAI Playground Optimize complex prompts
30 ๐Ÿ“ˆ LLM Evaluation Benchmarks, perplexity EleutherAI harness Model benchmarking
31 ๐Ÿ” RAG Fundamentals Vector search, retrieval FAISS, LangChain Simple RAG pipeline
32 ๐Ÿ—„๏ธ Vector Databases Pinecone, indexing HNSW Embeddings storage
33 ๐Ÿš€ Mini-Project: RAG Q&A System Retrieval integration LangChain, Hugging Face Query knowledge base
34 ๐Ÿ›ก๏ธ Hallucination Mitigation Grounding, confidence - Detect & correct hallucinations
35 ๐ŸŽฏ Capstone: Multimodal Chatbot with RAG Integration patterns PyTorch, LangChain Deploy via Streamlit

๐Ÿ“‘ Phase 3: Advanced Techniques โšก (Videos 36-50)

Master scaling, optimization, and production workflows.

# ๐ŸŽฌ Title ๐Ÿ”‘ Key Concepts ๐Ÿ› ๏ธ Tools โšก Hands-On
36 โšก Quantization & Pruning Efficiency trade-offs Torch Quantize Quantize an LLM
37 ๐Ÿ”— Distributed Training DP, MP, DDP Hugging Face Accelerate Multi-GPU training
38 ๐Ÿค– Agentic AI ReAct, tool calling LangGraph Web search agent
39 ๐Ÿง  RLHF PPO, reward models TRL library Fine-tune with feedback
40 ๐Ÿš€ Mini-Project: Task Automation Agent Memory management LangChain Email summarization
41 ๐Ÿ” Advanced Multimodal VLMs, fusion layers Hugging Face Image captioning
42 ๐Ÿ’ป Code LLMs GitHub Copilot CodeLlama Code generation
43 ๐Ÿ”’ Security in GenAI Adversarial attacks - Test LLM defenses
44 ๐Ÿ’ฐ Cost Optimization Token caching, batching OpenAI monitoring Cost optimization
45 ๐Ÿš€ Mini-Project: Scalable RAG with Agents Async processing LangChain, FAISS Research assistant
46 ๐Ÿ”ฌ Emerging Trends Mixture of Experts, o1 - Implement simple MoE
47 ๐Ÿ”’ Federated Learning Privacy preservation Flower Federated fine-tuning
48 ๐Ÿ“Š Benchmarking Latency, throughput Torch Profiler Profile pipeline
49 ๐ŸŒฑ Sustainability Carbon footprint CodeCarbon Measure emissions
50 ๐ŸŽฏ Capstone: Advanced Multimodal Agent Modular design PyTorch, LangChain Deploy to Spaces

๐Ÿ“‘ Phase 4: Architect-Level Mastery ๐Ÿข (Videos 51-70)

Design, build, and deploy production-grade GenAI systems.

# ๐ŸŽฌ Title ๐Ÿ”‘ Key Concepts ๐Ÿ› ๏ธ Tools โšก Hands-On
51 ๐Ÿ—๏ธ System Architecture Microservices, patterns Draw.io Sketch RAG system
52 ๐Ÿณ Deployment Docker, Kubernetes Minikube Containerize LLM
53 ๐Ÿ”Œ API Design REST, rate limiting FastAPI Inference API
54 ๐Ÿ“ˆ Monitoring & Logging Prometheus, alerts ELK stack Model logging
55 ๐Ÿš€ Mini-Project: Cloud RAG API CI/CD deployment AWS/Heroku Host free tier
56 ๐Ÿ”€ Hybrid Systems Ensemble ML models Scikit-learn + LLMs Hybrid classifier
57 ๐Ÿ“‹ Case Studies Healthcare, finance compliance HIPAA analysis Propose system
58 โš–๏ธ Scaling Architecture Load balancing, Redis Sharding Implement caching
59 ๐Ÿงช A/B Testing Statistical evaluation - Test prompts
60 ๐Ÿš€ Mini-Project: Enterprise LLM System User auth, scaling FastAPI, Docker Simulate production
61 โš–๏ธ Ethical Auditing Bias, explainability SHAP Audit model
62 โ˜๏ธ Serverless GenAI Lambda, event-driven AWS Lambda Serverless inference
63 ๐Ÿ›ก๏ธ Fault Tolerance Redundancy, retries Circuit breakers Resilient pipeline
64 ๐Ÿ‘ฅ Team Collaboration MLflow version control DVC Track experiments
65 ๐Ÿš€ Mini-Project: Production Pipeline Vision/text orchestration Kubernetes Multi-modal deployment
66 ๐Ÿ”ฎ Future-Proof Design Modular plugins - Upgradable agent
67 ๐Ÿ“œ Regulatory Compliance GDPR, AI Acts - Privacy handling
68 โš™๏ธ Hardware Optimization TPUs, ASICs Google Cloud TPUs TPU training
69 ๐ŸŽ™๏ธ Leadership in GenAI Business alignment - GenAI project pitch
70 ๐ŸŽฏ Capstone: Full GenAI Platform End-to-end architecture FastAPI, Docker, AWS Portfolio piece

๐ŸŽฏ Prerequisites & Learning Path

๐Ÿ† Career Impact

Career Path Skills Gained Target Companies
AI Engineer Model training, deployment Tech startups, FAANG
ML Architect System design, scaling Google, OpenAI, Meta
Data Scientist Advanced GenAI, research Netflix, Tesla
Product Manager AI strategy, ethics Airbnb, Spotify